In 30 years of cycling, I spent 20 of them struggling to have a good connection to the pedal. This was in part because of my feet, and in part because cycling footbeds did not exist (or were poorly made) when I started riding.

1989: As a junior rider, I was the kid who had his shoes so tight, the straps were hanging down off the ends of the shoe soles. I don’t have particularly narrow feet, but for the length of foot I have, my feet are extremely low volume (just like the rest of me: skinny). This means that in most conventional cycling shoes, my foot flops around like I am wearing a shoe box. Power transfer is terrible, arch support is non-existent and proprioceptive input is next to nothing.

In 1995 I got my first pair of custom made cycling shoes from Don Lamson (owner of D2 now, back then it was just called Lamson). He made me some custom footbeds using a crush box style impression system, and they were light years ahead of the stock “footbed” (read: 2mm eva foam liner of uniform thickness) that came standard (and still comes standard) in Sidi shoes of that era. While the arch contour was not perfect, it was a massive improvement for me and I instantly saw an increase in sprint power (yes, I had a SRM in 1995… 1. LeMond 2. Vaughters 3. Pearce)

This helped me tremendously but also complicated things, as it further enabled my tendencies towards tinkering and optimization. Over the next 15 years I would ride in a dozen different types of custom orthotics including multiple pair from Lamson/D2, multiple castings from Russell Bolig at Podium, a few pairs of E-Soles, R7 with integrated footbeds, and LUST carbon shoes with integrated footbeds.

All of the above methods used a lazer scan on a “foot pillow”, a “STS plaster sock” or a foam crushbox method to cast the foot and arch. None of these worked for me, for one primary reason: my foot is way, way too flexible.

On a scale of brick to gumby, I am gumby + 1. I don’t think of this quality in binary terms; it is not “good” or “bad”, life isn’t a Disney movie. It is filled with sliding scales, and in this case I am on the extreme edge of one side of the scale. Any time you are on the extreme edge, there is a price to pay.

The advantage for being extremely flexible is that it allows me to have multiple bikes that have featured on The down side is that when your soft tissue is hyper mobile, it can become a challenge to make force effectively, or control large amounts of force. It also tends to make you an orthotics princess.

In 2013, Aaron Anderson of PTI Orthotics made me a pair of custom footbeds, and they are the first pair anyone has made for me that has required zero tinkering. I got them on a wednesday and raced them on the weekend, felt great and had my best result ever on a course that normally does not suit my type of riding. It was an extremely good experience and I have been using his footbeds ever since.

What is different about Aaron’s methods that made the difference? Aaron uses a completely unweighted scan of the foot to make the shape of the orthotic. The client lays prone and the foot is scanned while it is held in a neutral position. Aaron uses various assessment methods to decide what modifications, if any, are made to the model, which is saves as a file. Once the final shape is determined, a CNC machine makes a positive mold of the foot, from which one or more identical orthosis can be manufactured. Aaron uses your cycling shoes during the process to ensure they fit into the shoe perfectly.

If you are interested in visiting Aaron for a consultation, note that he has two offices (one in Boulder, one in Longmont). You can find out more information about how to book an appointment here.